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ABSTRACT 

F i n i t e  element methods f o r  nonlinear s h e l l  a n a l y s i s  are analyzed 

using both t h e  minimum p o t e n t i a l  energy and t h e  mixed formulations.  

Exis tence and l o c a l  uniqueness of both t h e  exact  s o l u t i o n s  and t h e  

corresponding finite s o ~ u ' l ~ o n s  are ErroL= 'Douilds, - W I l l C I l  -'- J -'- 

are of t h e  same order  as f o r  t h e  corresponding l i n e a r  problems, are 

es t ab l i shed .  
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I. In t roduc t ion  

I n  t h i s  paper we  analyze f i n i t e  element methods f o r  nonl inear  s h e l l  

ana lys i s .  

and t h e  mixed formulation using a modified form of t h e  Hellinger-Reissner 

s t a t i o n a r y  v a r i a t i o n a l  p r inc ip l e .  These were considered i n  t h e  engineer ing 

l i t c ra t i i re  by 1I.j and [ 9 ] .  Addi t izna l  refere~ces c m  also h e  found i n  t h e s e  

papers. W e  s h a l l  use t h e  nonl inear  shallow s h e l l  theory f o r  i s o t r o p i c  s h e l l s  

and s h a l l  assume Ki rchof f ' s  hypothesis. 

obtained i n  t h e  s p e c i a l  case t h a t  t h e  cu rva tu re  i s  zero.  

We consider  both t h e  usua l  minimum p o t e n t i a l  energy formulation 

The von Karman theory f o r  p l a t e s  is  

From t h e  po in t  of view of mathematical f i n i t e  element a n a l y s i s ,  a novel 

p a r t  of nonl inear  s h e l l  a n a l y s i s  i s  t h e  f a c t  t h a t  one may have non-unique 

s o l u t i o n s .  Typical ly  one considers  t h e  load f t o  be given by Afo where 

A is a load parameter, and then t racks success ive  s o l u t i o n s  f o r  d i f f e r e n t  

( i n i t i a l l y  inc reas ing )  va lues  of the load  parameter. Consider i n  p a r t i c u l a r  

t h e  snap-through buckling of a s h e l l  (see p. 370-71 of [5]). A s  t h e  load 

parameter A is  increased a c r i t i c a l  load X which occurs  a t  a l i m i t  po in t  

is found. The load curve ( see  f igu re  1) would then show unloading and perhaps 

r e load ing  as o t h e r  elements of r e s i s t a n c e  are mobilized by t h e  f i n i t e  deforma- 

t i o n s .  

provided t h a t  t h e  material capaci ty  i s  no t  exceeded. 

t r a n s i t i o n  from t h e  loading t o  t h e  reloading branches of t h e  curve a t  

wi th  a corresponding jump i n  D,  (called snap-through buckling) where D is  

some s c a l a r  r ep resen ta t ion  of the displacement. 

cr  

I f  t h i s  r e s i s t a n c e  is  adequate t h e  load may even tua l ly  su rpass  Xcr 

There is  o f t e n  a sudden 

cr A 



Figure 1. 

Our analysis proceeds by using Kantorovich's theorem at successive 

load steps to prove local existence and uniqueness both of the exact solution 

and of the finite element solution. We also show that the order of convergence 

of the finite element approximations is optimal, i.e. the same order as is 

obtained in the corresponding linear problems. Our analysis is carried out 

for both the usual minimum potential energy formulation and the mixed formu- 

lation using a modified form of the Hellinger-Reissner stationary variational 

principle. 

In our analysis the size of the load increments that can be taken and 

still satisfy the conditions of Kantorovich's theorem for local existence 

and uniqueness decreases with increasing displacement in the minimum potential 

energy method but not in the mixed method. 

possible in the mixed method seem to be born out in fact in some numerical 

The apparent larger load increments 

experiments by the author on a simple one dimensional model problem. 

For simplicity we consider the case of the clamped shell throughout. 

Also, in order to make the equations somewhat simpler, we shall analyze the 

shallow shell equations rather than the conventional shell equations. Our 

analysis is no way restricted to shallow shells. 

would approximate the curvatures 

numerical integration. 

approximations, since the analysis of this effect does not  differ from the 

In actual computations one 

by piecewise polynomials, or use kafi 
In this paper we d o  not consider the effect of such 

linear problem, see L31. 



11. Minimum Potential Energy Formulation 

1 1 2 Let 52 be the shell domain and let X = H o ( f i ) ~ H o ( 5 2 ) ~ H o ( f i ) .  On X 

we define the norm 

The shell problem can be expressed as: find - u = (ul,uz,w)E. X such that 

(1) 

where 

S(2;f) = min S(v; f )  - = min[B(v,v) - 2(f,v)] 
v €  x v c  x - 

or equivalently as: find u €  X such that 

( 3 )  



denotes the curvature and twist of the shell surface, and kaB where 

A;By6 aBy6 
and G’ are coefficients. Here u1 and u2 are the in-plane 

displacements and w is the transverse displacement. We use the con- 

vention that the repeated subscripts a ,  8 ,  y, 6 indicate implied summa- 

tions over these subscripts. Throughout we use Greek letters for indices 

which take their values in the set (1, 2). 

For the finite element approximation to the solution 2 of (l), 
1 2 choose finite dimensional subspaces VhC HO(R), W h C  H0(R), with 

h h h  3 = V x Why and find sh = ( u ~ ,  u2, w ) E  such that h 

( 4 )  
h h 

S ( g  ;f> = min S(v ;f) , 

or equivalently, find - u € % such that 

(5) 

Our proofs of existence and uniqueness of solutions of ( 3 )  and (5) will 

be based largely on the following lemma, which we state and prove for the 

exact problem (3)  but which applies equally to the approximate problem (5). 

Lemma 1. Suppose there exists a solution % to (3 )  for f = AOfO 

such that 

Then there exists a Ah and an r such that for f = (Xo+Ah)fo, (3)  has a 

unique solution satisfying 11 E-% 1 1  5 r. 

-4- 



Proof. 

theorem for the solution of equations in Banach spaces by Newton's method. 

Observe that 

The proof consists of verifying the hypotheses of Kantorovich's 

'L 
~S(U~,~;(X~+A~)~~) = la A A f g  and thus the solution - u to 

is bounded by 

It is straightforward to verify using the inequalities 

1 L4(Q) C H (Q) , that and the embedding 

for all v ,v E S = {I: 11 ]I 1. 2a0), where M depends linearly 

on 

[4], p. 143-150), if 

X -1 -2 

11 ( v ~ ) ~  + ( v ~ ) ~  11,. By Kantorovich's theorem ( [  7 1 ,  Chapter 18, see also 

then there exists a unique solution 2 to (3) with 11 =-L& 1 1  1. r where 
X 

-5- 



A s  stated above, the same proof goes through in the case of the approximate 

problem ( 5 ) .  In fact, the bounds (8) and (9)  are clearly independent of h, 

once we show, as we do below, that the bound (6) can be chosen independent of 

h. Then both Ah and r will be independent of h. 

We wish to generate a sequence of loads X and corresponding solutions i 
h u. and fii t o  (3)  and (5) respectively by repeated application of Lemma 1. 

Suppose we let X = 0. Clearly for f = 0 both (3) and (5) have the unique 
h solution 

since 62S(0,$,z) 

-1 

0 

% = u+, = 0. In addition, the assumption (6) is clearly satisfied 

is the bilinear form associated with the linear shell 

problem, for which the ellipticity assumption (6) has been shown to hold in 

[ 2 ] .  

unique solutions u and uh It is immediate by writing 6 S(v -9- 6,G) - as 

Thus by Lemma 1 there is a X1 = Xo + AXl for which we are guaranteed 

2 
-1 -1' 

2 2 2 
6 S(%,;,g) - (6 S(u 4'- 6,6) - - 6 S ( ~ , ~ , ~ ) )  and using (9)  that there exists 

2 an r' and an a' such that 6 S(v,6,6) - - -  - > a' 11% 1 1 2  for all - v satisfying 

II 1-3 / I x  - < r', where r' depends on 11 u+, 11,. Thus by making the r in 

Lemma 1 somewhat smaller if necessary (by over-estimating the constant M in 

( 9 ) )  one can generate a sequence of loads AifO converging to Xcrf and 

corresponding solutions u. to (3 )  by repeated application of Lemma 1. 

We show below that if the finite element approximation si to u. 

-1 
h 

-1 

satisfies 

II 2. - !! h II - < Chk 
1 i x  

to u satisfies h then the finite element approximation u - i+l -i+l 
k 

< C'h , where both C and C '  are independent of h. 
h I 1  ui+l - ~ i + l  I I  x - 

Using (lo), we can choose the in Lemma 1 to apply t o  both the exact 0 



problem (3) and t h e  approximate problem (51, t hus  i n s u r i n g  t h a t  a s i n g l e  

AXi and r can be chosen i n  Lemma 1 f o r  both zi+l and i t s  f i n i t e  element 

approximat ion  h 
%+l 

The method of a n a l y s i s  presented he re  p a r a l l e l s  c l o s e l y  t h e  procedure 

one would use t o  a c t u a l l y  compute approximate s o l u t i o n s .  To cont inue  follow- 

ing  t h e  load curve beyond t h e  c r i t i c a l  load ,  however, a s l i g h t l y  d i f f e r e n t  

s t r a t e g y  i s  needed near  X . After f i n d i n g  A with  d e s i r e d  accuracy 

(when t h e  s i z e  of t h e  load increments t h a t  can be taken becomes small enough), 

c r  cr 

i n s t e a d  of using t h e  s o l u t i o n  a t  the previous load s t e p  as t h e  s t a r t i n g  value, 

one i n s t e a d  pe r tu rbs  t h e  cu r ren t  so lu t ion  and reduces t h e  load.  

-h Suppose t h a t  t h i s  s t a r t i n g  value is  - u . Then uh is t h e  f i n i t e  element 
- 

s o l u t i o n  f o r  some load  g,  i f  there  ex is t s  A such t h a t  

s m a l l  enough, then Lemma 1 can be  used t o  f i n d  s o l u t i o n s  t o  both (3) and ( 5 )  

f o r  t h e  load If,.  This  s t r a t e g y  may be too  s i m p l i s t i c  i n  more gene ra l  s i t u -  

a t i o n s ,  s i n c e  it assumes t h a t  t h e  d i r e c t i o n  of t h e  load  curve i s  known, but  

11 g-xf,llT2,,, is 
Jd \ * G I  

it  seems adequate f o r  t h e  present  ana lys i s .  A more s o p h i s t i c a t e d  s t r a t e g y  

is  given i n  [ l ] ,  when no presumption is made concerning t h e  d i r e c t i o n  of t h e  

load curve. 

W e  now proceed t o  ob ta in  e r r o r  bounds. W e  assume t h a t  t h e  f i n i t e  element 

subspaces have t h e  fol lowing approximation p rope r t i e s .  

9 -  > 3 

w E HS(Q) n Ho(Q), 3 - -  < s < q ,  then t h e r e  is  some g E V,, such t h a t  

There is  some 

such t h a t  i f  1' (HS-'(G!) x HS-'(G!)) n (Hi(R) X Hi(R)) and 

2 --h 

--h and t h e r e  is  some w E Wh such t h a t  

-7- 



where C and C '  are independent of h. 

1 
Theorem 1. L e t  t h e  f i n i t e  element subpaces V h C  HO(f i )  and 

h 
W C H2(Q) s a t i s f y  (11) and (12) r e spec t ive ly .  Suppose -1 u .  and i u 

are s o l u t i o n s  t o  (3) and (5) r e s p e c t i v e l y  f o r  load such t h a t  

( 6 )  is s a t i s f i e d .  Then t h e r e  exist Xi+l = X. + AXi and r such t h a t  

t h e r e  e x i s t  unique s o l u t i o n s  u 

h O  

f = XifO 

1 

and u t o  (3) and (5) r e spec t ive ly  - i+l -i+l 

f o r  load f = Xi+lfo, with 

(13) II !Li-?!+i+1 

Furthermore, i f  

< I - r.9 

X 
h h  II u i -u -i+l I < r. 

X 

where C is  independent of h ,  

(15) 

where C'  i s  independent of h .  

Proof: The ex i s t ence  and uniqueness of -i+l u and -i+l u s a t i s f y i n g  

-i 
-h and u -h 

(13) follows from Lema 1 and our subsequent d i scuss ion .  

s a t i s f y  (11) and (12) f o r  u and ui r e spec t ive ly .  L e t  

Gh = uh -uh-(ah -Gh). We have t h e  e q u a l i t v  

Let gi+l 

-i+l 

-i+l I i + l  7 - 



The right side of (16) can be bounded by 

We show that the left side of (16) can be bounded from below by 

where f3 and 8 '  are constants independent of a ,h, and r, and a. is  

the constant in the inequality (6). As mentioned before, r can be taken 

small enough that ao-Br-Brr2 > 0. Once we have established the inequality 

(18), the bound (15) follows from the triangle inequality and (14). 

0 

2 h h h  The appearance of -6 S(II~,U ,! ) in the brackets on the left side of 

(16) serves to cancel out all of the linear terms in the previous four terms. 

There are three nonlinear terms to be bounded, corresponding to the three 

nonlinear terms i n  ( 3 ) .  Corresponding t o  the first, we have 

-9- 



aa h ,h a w .  aw 
1 

Using t h e  embedding L 4 (n)C H 1 ( Q ) ,  t h e  f i r s t  term on t h e  r i g h t  s i d e  of (19) 

can be bounded by 

of (19) can be bounded by K'h 

(16). 

Corresponding t o  t h e  las t  nonl inear  term i n  ( 3 ) ,  we have 

K r l l  Gh /I2 , while t h e  second term on t h e  r i g h t  hand s i d e  

11 cylx, and moved over t o  t h e  r i g h t  s i d e  o f '  

- 
s-2 

The second nonl inear  term i n  (3)  can be handled i n  t h e  same way as (19). 

-10- 



-h -h a (wi+l-w. 1 a 
1 + 

3X Y axg 

It is clear t h a t  t h e  r i g h t  s i d e  of (20) can be bounded s i m i l a r l y  t o  (19) 

except t h a t  t h e  cons t an t s  w i l l  depend on 

ex i s t ence  and uniqueness. 

, as i n  our  proof of h 11 wi 11 
H (fU 

Near t h e  c r i t i c a l  load ,  we still ob ta in  opt imal  error bounds if w e  

h 
-i rep lace  u by 2 as above and assume t h e  bound 

\I -+ "11. II L Chs'2 , 

-11- 



- 
where g is  the exact s o l u t i o n  t o  (3)  f o r  t h e  load g. Such an assump- 

t i o n  i s  j u s t i f i a b l e  i f  t h e  displacement g occurs p r i o r  t o  t h e  c r i t i c a l  
- 

load f o r  t h e  load d i s t r i b u t i o n  g. 

111. Mixed Formulation 
2 2 

L e t  (L2(Q))3 = L2(S?) x L ($2) X L ( Q )  with norm 

L e t  2 = X x (L2(Q))3 X (L2(Q))3. On 2 w e  d e f i n e  t h e  norm 

where $I = (E, E ,  E ) ,  with N,  M,  2x2 symmetric t e n s o r s ,  which r ep resen t  

t h e  d i r e c t  s t r e s s e s  and t h e  bending moments r e spec t ive ly .  

l a t i o n  of t h e  s h e l l  problem may be expressed as: f i n d  $I = (u N M I E  2 

such t h a t  

- -  
The mixed formu- 

- -* -9 - 

(21) aU 
+ (2 + k w + *-- ;Ea ;E ) Nolo 

B aB ci 



or equivalently as: find 9 2 such that 

For the finite element approximation to-the solution 9 of (22); choose 
h 2 h 2 3  

finite dimensional subspaces SN C (L (fill3 and SM C (L (fi)) , along with 
Vh and Wh of the previous section. Let Xh = j i h X S N X S n  and find 

- Qh = (u",~~,$) f $, such that 

h 

or equivalently : find - Oh E ih such that 

have the following approximation properties. h We assume the SN and SM 

If - N € (HS-2(G!))2, - M € (HS-*(Q))*, then there is some - PC S i ,  ghC Si 
such that 

-13- 



The same analysis of existence and uniqueness goes through for the 

mixed method as for the minimum energy method in the previous section, once 

we prove the following lemma. Let PN denote the orthogonal projection of 

( ~ ~ ( ~ 1 1 ~  into sN. h 

h h Lemma 2. Suppose that the subspaces SN and SM satisfy the 
h h h h following: all vectors ( ~ u l / ~ x l , ~ u 2 / ~ x 2 , ~ ( ~ u l / ~ x l  + au 2 /ax,)) are contained 

h h h  in SN for all (u,,u,) E V h  and all vectors (w=,w ,wh ) 

in SM for all wh € 2 .  
YY Xy 

Then 

are contained 

and for h small enough 

II $ II A 7 
X 

h 

all X , 

2 sup 6 R(0 
2 

I I  !4!h II 7 

where c1 is a constant independent of h. 0 

A 

Proof. 

follow from (27 ) .  

and SM in order to prove (28). We shall prove (28). It will be clear 

that (27)  can  h e  proved in the same manner. 

Since the supremum in (29) is only taken over s7 (26) does not 
h 
SN In fact, it is necessary to restrict the subspaces 

h 

-14- 
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. 

W e  t ake  g t o  be t h e  vec to r  (Nll,N22,N12) and t o  be t h e  vec to r  

(Mll,M22,M12). 62R(0,$,i) can be expressed i n  matr ix  form as 

h where T l ~ h  has  components 3ug/3xa + k aB wh and T2wh is t h e  vec to r  

(w,,w ,wty). Both t h e  mat r ices  A and G a r e  p o s i t i v e  d e f i n i t e .  Now 

choose 

h h  
YY 

h h It i s  clear t h a t  and - gh a re  contained i n  SN and SM re spec t ive ly ,  

and t h a t  t he re  e x i s t s  a constant  C such t h a t  

We obta in  

h h h h h 
(30) + (T2w ,G-lT2w ) + ( T p  ,A-l(PN(kagW >-kaw 1) 

- > (C'-K'h2) 11 $ 1 1  11 $ 1 1  

Here we have used t he  approximation property of Sh N and the  e l l i p t i c i t y  property 

-- 
proved i n  [2]. This e s t a b l i s h e s  (28). The inequa l i ty  (27) can be proved i n  

t h e  same way. 

-15- 
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1 Theorem 2 .  Let the finite element subspaces V h c  Ho(Q) and 
2 W h C  Ho(Q) satisfy (11) and (12)  respectively. Let the subspaces 

S i  c (L2(Q))3 and S i c  (L2(f2))3 

along with the hypotheses of Lemma 2 .  

(22)  and ( 2 4 )  respectively for the load 

are satisfied, then there exist Ai+l = Xi + Ahi and r such that there 

exist unique solutions Ipi+l 

the load 

satisfy (25)  and (26) respectively 

If ki and $ are solutions to 
f = hifO such that (27)  and (28)  

and Iph to (22)  and ( 2 4 )  respectively for i+l 

f = Xi+lfo, with 

Furthermore, if 

X 
where K is independent of h, then 

( 3 3 )  
. 

where K' is independent of h. 

h 
Proof. The proof of existence and uniqueness of &i+l and $i+l 

satisfying (31) follows in the same way as for the minimum energy formulation 

except that the constant M in (9), and thus also r, is independent of 

II WII 2 

previous section. 

. The bound (33)  can be established in the same manner as in the 
H (Q) 

For the mixed method all estimates on the nonlinear terms 

are similar to (19). No estimates like (20) enter. 

. 
IV. Concluding Remarks 

If one assumes Kirchhoff's hypothesis, the weak form of the shell equa- 

tions ir.\y.clves second partials cf the transverse displacement w. Thus C' 

-16- 
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* 

finite elements must be used to approximate 

a major reason for considering mixed methods is to allow, by integration 

by parts, the use of C -finite elements, as in [6] and [8 ] .  In this 

paper we did not consider this possibility because results of the type 

obtained here are not straight-forward to obtain. 

that the system is no longer quasi-linear, and the bound (9) does not 

hold. 

forward way. 

has only first partials of w appearing, but with additional variables, 

the transverse shear stresses Q, and the rotations 4,. This system 

is also not quasi-linear. 

w. For linear problems, 

0 

One difficulty is 

Thus Kantorovich's theorem can not be applied in a straight- 

If one does not assume Kirchhoff's hypothesis, one also 

It is the author's opinion that the fact that the size of the load 

steps that can be taken is independent of the size of w for the mixed 

method but not for the minimum potential energy method is significant. 

One does, however have a system with many more independent variables 

which is not positive definite. When this larger system has been solved, 

however, one has the stresses and bending moments explicitly, and doesn't 

need to obtain them by differentiation of the displacements, a non-negligible 

cost. 

-17- 



References 

1. J. L. Batoz, A. Chattopadhyay, and G. Dhatt, "Finite element large 
deflection analysis of shallow shells," Int. J. Numer. Meth. Engr., 
- 10, (1976), 39-58. 

M. Bernadou and P. G. Ciarlet, "Sur l'ellipticitg du modsle lingaire 
de coques de W. T. Koiter," Proceedings of the Second International 
Symposium on Computing Methods in Applied Sciences and Engineering, 
I.R.I.A., Versailles, 1976. 

2. 

3. P. G. Ciarlet, "Conforming finite element methods for the shell pro- 
blem," in The Mathematics of Finite Elements and Applications 11, 
ed. J. R. Whiteman, Academic Press, New York, 1977. 

4 .  A. A. Goldstein, Constructive Real Analysis, Harper and Row, New 
York, 1967. 

5. P. L. Gould, Static Analysis of Shells, D. C. Heath and Co., Lexington, 
MA, 1977. 

6 .  C. Johnson, "On the convergence of a mixed finite element method for 
plate bending problems," Numer. Math., 2 (1973), 43-62. 

7. L. V. Kantorovich and G. P. Akilov, Functional Analysis in Normed 
Spaces, Pergamon Press, New York, 1964. 

8. T. Miyoshi, "A finite element method for the solution of fourth order 
partial differential equations," Kumamoto J. Sci. (Math.) , 2 (19731, 
87-116. 

9. A. K. Noor and S. J. Hartley, "Nonlinear shell analysis via mixed 
isaparametric elements," Computers and Structures, 1 (1977), 615-26. 

-18- 

D 

1 


